电气工程
会计论文
金融论文
国际贸易
财务管理
人力资源
轻化工程
德语论文
工程管理
文化产业管理
信息计算科学
电气自动化
历史论文
机械设计
电子通信
英语论文
物流论文
电子商务
法律论文
工商管理
旅游管理
市场营销
电视制片管理
材料科学工程
汉语言文学
免费获取
制药工程
生物工程
包装工程
模具设计
测控专业
工业工程
教育管理
行政管理
应用物理
电子信息工程
服装设计工程
教育技术学
论文降重
通信工程
电子机电
印刷工程
土木工程
交通工程
食品科学
艺术设计
新闻专业
信息管理
给水排水工程
化学工程工艺
推广赚积分
付款方式
首页
|
毕业论文
|
论文格式
|
个人简历
|
工作总结
|
入党申请书
|
求职信
|
入团申请书
|
工作计划
|
免费论文
|
现成论文
|
论文同学网
|
全站搜索
搜索
高级搜索
当前位置:
论文格式网
->
免费论文
->
其他论文
基于LV-SVMs 的UUV NARX动态辨识模型(一)
本论文在
其他论文
栏目,由
论文格式
网整理,转载请注明来源
www.lwgsw.com
,更多论文,请点
论文格式范文
查看 提 要 鉴于水下无人控制机器人(UUV) 的动态控制越来越重要,本文针对当前辨识模型存在的所获参数精确性不足,运用非线性黑箱辨识模型,提出了基于最小二乘支持向量机的UUV NARX 动态辨识模型。将该模型应用于辨识UUV 的两个关键参数偏航角γ和x y 平面内的速度ν , 取得了良好的辨识效果。
主题词 水下机器人 动态控制 非线性控制 参数识别 数学模型
水下无人控制机器人( UUV ———UnmannedUnderwater Vehicles) 目前已广泛地运用到商业、科研、军事等领域。但是,面对越来越长时间的工作量和种种未知的工作环境,对UUV 的动态控制也变得越来越复杂。因此,在UUV 中嵌入智能控制系统,以使UUV 能更好地完成复杂的任务。UUV的动态控制系统的输出,若能与参考模型的理想输出一致,则可以获得良好的控制性能,因而参考模型直接影响到动态控制系统能否对UUV 的当前状态作出正确判断。但是,UUV 的水动力学方程异常复杂[ 1 ] ,为此在以往的研究中,都是通过简化方程来获得UUV 的相关系统参数的,如文献[ 6 ]运用最小二乘法,文献[ 7 ]运用卡尔曼滤波法,都取得了不错的辨识效果。但这些简化都存在不同程度的损耗,降低了所获得参数的精确性。为了提高UUV 参数的精确性, 进一步提高UUV 的动态控制性能,本文提出了一种基于最小二乘支持向量机(LVOSVMS) 的非线性黑箱建模(BlackObox modeling) 方法,建立了基于最小二乘支持向量机的UUV NARX 动态辨识模型。
1 非线性黑箱辨识模型
非线性黑箱辨识模型的结构如图1 所示。
图1 非线性黑箱辨识模型结构图
对于输入向量ut = [ u(1) , u(2) , ⋯, u( t) ] 和输出向量yt = [ y (1) , y (2) , ⋯, y ( t) ] , 构造函数如下[4 ] y ( t) = g (ψ( t) ) +ν( t) 。其中g (·) 为对y ( t) 的估计; ν( t) 为误差项; ψ( t)=ψ( ut - 1 , yt- 1 ) 为回归因子。g (·) 是从输入向量ut ,到回归因子和从回归因子到输出向量yt 这两个映
射间的桥梁。
在实际应用中,已经建立了很多实用的非线性模型,常用的有:
(1) NFIR 模型,用u( t - k) 作为回归因子;
(2) NARX 模型,用u( t - k) 和y ( t - k) 作为回归因子;
(3) NOE 模型(也叫自回归输入/ 输出模型或并行模型) ,用u( t - k) 和^y ( t - k) 作为回归因子;
(4) NARMAX 模型,用u( t - k) , ^y ( t - k) 和ε( t - k) 作为回归因子。
其中NOE 模型和NARMAX 模型对应于循环结构,即回归因子包含非线性模型的估计输出(注意,是非线性模型的输出而不是真实未知系统的输出) ,这种回归容易使系统不稳定。NOE 模型在内部形成反馈,这也可能造成模型的不稳定性。NFIR模型,仅仅用u( t - k) 作为回归因子,对于UUV 这样复杂的系统,回归因子中变量太少。为此,本文采用NARX 模型。
2 最小二乘支持向量机
2. 1 算法
LSOSVMs 是由Suyken J A K提出的一种新型的支持向量机[2 ] ,有别于传统支持向量机采用二次规划方法解决分类和函数估计问题。最小二乘支持向量机是采用多类核的机器学习,即采用核函数,根据Mercer 条件,从原始空间中抽取特征,将原始空间中的样本映射为高维特征空间中的一个向量,以解决原始空间中线性不可分的问题。具体算法推导如下:对于给定的样本数据集( xi , yi ) ( i = 1 ,2 , ⋯,l ; xi ∈Rn ; yi ∈Rn) , 利用高维特征空间中的函数:
y ( x) = ωTφ( x) + b;ω ∈ Rnh , b ∈R来拟合样本集。非线性映射φ( x) 把数据集从输入空间映射到高维特征空间。式中ω为权向量; b为偏置量。根据结构风险最小化原理,回归问题转化为约束优化问题:min J (ω, e) = 12ωTω +C2 Σli = 1e2is. t . yi = ωTφ( xi ) + b + ei式中C 为可调参数; ei ∈R 为误差变量。建立Lagrange 函数:
L ( ω, b, e;α) = J (ω, e) - Σli = 1αi [ωTφ( xi ) + b + ei - yi ]
首页
上一页
1
2
3
下一页
尾页
1
/3/3
相关论文
上一篇
:
基于信息化的石油企业组织变革研究
下一篇
:
基于电子废弃物的逆向物流网络研究
Tags:
基于
LV-SVMs
UUV
NARX
动态
辨识
模型
【
收藏
】 【
返回顶部
】
人力资源论文
金融论文
会计论文
财务论文
法律论文
物流论文
工商管理论文
其他论文
保险学免费论文
财政学免费论文
工程管理免费论文
经济学免费论文
市场营销免费论文
投资学免费论文
信息管理免费论文
行政管理免费论文
财务会计论文格式
数学教育论文格式
数学与应用数学论文
物流论文格式范文
财务管理论文格式
营销论文格式范文
人力资源论文格式
电子商务毕业论文
法律专业毕业论文
工商管理毕业论文
汉语言文学论文
计算机毕业论文
教育管理毕业论文
现代教育技术论文
小学教育毕业论文
心理学毕业论文
学前教育毕业论文
中文系文学论文
最新文章
热门文章
推荐文章